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This study deals with continuous limits of interacting one-dimensional diffusive sys-
tems, arising from stochastic distortions of discrete curves with various kinds of coding
representations. These systems are essentially of a reaction-diffusion nature. In the non-
reversible case, the invariant measure has in general a non Gibbs form. The correspond-
ing steady-state regime is analyzed in detail, by using a tagged particle together with a
state-graph cycle expansion of the probability currents. As a consequence, the constants
appearing in Lotka–Volterra equations—which describe the fluid limits of stationary
states—can be traced back directly at the discrete level to tagged particle cycles coeffi-
cients. Current fluctuations are also studied and the Lagrangian is obtained via an iter-
ative scheme. The related Hamilton–Jacobi equation, which leads to the large deviation
functional, is investigated and solved in the reversible case, just for the sake of checking.

KEY WORDS: exclusion process, Gibbs state, hydrodynamic limit, functional equa-
tion, current, Hamilton–Jacobi

1. INTRODUCTION

Interplay between discrete and continuous description is a recurrent question in
statistical physics, which in some cases can be addressed quite rigorously via
probabilistic methods. In the context of reaction-diffusion systems this amounts
to studying fluid or hydrodynamic limits, and number of approaches have been
proposed, inparticular in the framework of exclusion processes, see Refs. 8, 23,
25, 30 and references therein. As far as the above limits are at stake, all these
methods have in common to be limited to systems having stationary states given
in closed product form, or at least to systems for which the invariant measure for
finite N is explicitly known, For instance, ASEP with open boundary are described
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in terms of matrix product forms (really a sort of non-commutative product form),
and the continuous limits can be understood by means of Brownian bridges.(9) We
propose to tackle these problems from a different view-point. The initial objects are
discrete sample paths enduring stochastic deformations, and our primary concern
is to understand the nature of the limit curves, when N goes to infinity: how do they
evolve in time, and which limiting process do they represent as t goes to infinity:
in other words, what are the equilibrium curves? Following Refs. 15 and 16, we
give here some partial answers to these questions.

In Ref. 15 a specific model was considered, namely paths on the square lattice,
and we could reformulate the problem in terms of coupled exclusion processes,
to understand the thermodynamic equilibrium and a phase transition point above
which curves reach a deterministic profile, solution of a nonlinear dynamical
system which was solved explicitly by means of elliptic functions. Two extensions
of this system were introduced in Ref. 16:

• one which comprises multi-type exclusion particle systems encountered
in another context (see e.g. Refs. 13, 14), including the ABC model for
which similar features occur;(7)

• a tri-coupled exclusion process to represent the stochastic dynamics of
curves in the three-dimensional space.

With this extended formulation, we provided a set of general conditions for re-
versibility, by analyzing cycles in the state space and the corresponding invariant
measure.

This paper focuses on non-Gibbs states and transient regimes. In another work
in progress,(17) we analyze the asymmetric simple exclusion process (ASEP) on a
torus. Under suitable initial conditions, the usual sequence of empirical measures
converges in probability to a deterministic measure, which is the unique weak
solution of a Cauchy problem. The method presents some new features, and relies
on the analysis of a family of parabolic differential operators, involving variational
calculus. This approach let hope for a pretty large level of generalization, and we
are working over its general conditions of validity.

Sections 3 and 4 are devoted to the stationary regime, for which, from Refs. 15
and 16, the limit curves are known to satisfy a differential system of Lotka–Volterra
type which is the essence of the fluid limits in our context. Section 3 solves the
steady state regime in the reversible case. A geometric interpretation of the free
energy is provided (involving the algebraic area enclosed by the curve), as well as
an urn model description for the underlying dynamical system, leading precisely
to a Lotka–Volterra system.

Non-Gibbs states are considered in Sec. 4. In Ref. 16, necessary and suf-
ficient conditions for reversibility were given, by identification of a family of
independent cycles in the state graph, for which Kolmogorov’s criteria have to be
fulfilled. We pursue this analysis by showing that irreversibility occurs as a result
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of particle currents attached to these cycles. A connection between recursion prop-
erties (originating matrix solutions) and particle cycles in the state-graph is found,
with the introduction of loop currents by the analogy with electric circuits. These
recursions at discrete level connect together invariant measures of systems of size
N (the number of sites) and of size N − 1, and they involve coefficients which
are given a concrete meaning. Indeed, by means of a functional approach, we map
explicitly these structure coefficients onto special constants which intervene in the
Lotka–Volterra systems describing the fluid limit, as N → ∞.

In the last Sec. 5, we observe that local equilibrium takes place at a rapid time-
scale, compared to the diffusion time which is the natural scale of the system. We
extend the iterative scheme procedure initiated in Ref. 15 and developed in Ref. 16,
which originally concerned only the steady-state regime. In fact, this scheme allow
us to express in transient regime particle-currents in terms of deterministic particle
densities: this is a mere consequence of a law of large numbers. At least when
the diffusion scale is identical for all particle species, local correlations are found
to be absent at the hydrodynamical scale. Finally, in the spirit of the study made
in Ref. 4, we obtain the Lagrangian describing fluctuations of currents, and we
analyze the related Hamilton–Jacobi equations.

2. MODEL DEFINITION

2.1. A Stochastic Clock Model

The system consists of an oriented path embedded in a bidimensional man-
ifold, with N steps of equal size, each one being chosen among a discrete set
of n possible orientations, drawn from the set of angles with some given origin
{ 2kπ

n , k = 0, . . . , n − 1}. The stochastic dynamics in force consists in displacing
one single point at a time without breaking the path, while keeping all links within
the set of admissible orientations. In this operation, two links are simultaneously
displaced. This constrains quite strongly the possible dynamical rules, which are
given in terms of reactions between consecutive links.

For any n, we can define

Xk Xl λkl←→
λlk

Xl Xk, k ∈ [1, n], k �= l, (2.1)

which in the sequel will be sometimes referred to as a local exchange process. It
is necessary to discriminate between n odd and n even. Indeed, for n = 2p, there
is another set of possible stochastic rules:

⎧
⎪⎪⎨

⎪⎪⎩

Xk Xl
λkl←→
λlk

Xl Xk, k = 1, . . . , n, l �= k + p,

Xk Xk+p
γ k

←→
δk+1

Xk+1 Xk+p+1, k = 1, . . . , n.

(2.2)
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The distinction is simply due to the presence, for even n, of folds (two
consecutive links with opposite directions), which may undergo different transition
rules, leading to a richer dynamics. The parameters {λkl} represent the exchange
rates between two consecutive links, while the γk’s and δk’s correspond to the
rotation of a fold to the right or to the left.

2.2. Examples

2.2.1. The Simple Exclusion Process

The first elementary and most studied example is the simple exclusion pro-
cess, which after mapping particles onto links corresponds to a one-dimensional
fluctuating interface. In that case, we simply have a binary alphabet. Letting
X1 = τ and X2 = τ̄ , the reactions rewrite

τ τ̄
λ−

→←
λ+

τ̄ τ,

where λ± is the transition rate for the jump of a particle to the right or to the left.

2.2.2. The Triangular Lattice and the ABC Model

Here the evolution of the random walk is restricted to the triangular lattice.
A link (or step) of the walk is either 1, e2iπ/3 or e4iπ/3, and quite naturally will
be said to be of type A, B and C, respectively. This corresponds to the so-called
ABC model, since there is a coding by a 3-letter alphabet. The set of transitions
(or reactions) is given by

AB
λba→←
λab

B A, BC
λcb→←
λbc

C B, C A
λac→←
λca

AC, (2.3)

where the rates are arbitrary positive numbers. Also we impose periodic boundary
conditions on the sample paths. This model was first introduced in Ref. 13 in
the context of particles with exclusion, and, for some cases corresponding to
reversibility, a Gibbs form has been found in Ref. 14.

2.2.3. A Coupled Exclusion Model in the Square Lattice

This model was introduced in Ref. 15 to analyze stochastic distortions of
a walk in the square lattice. Assuming links are counterclockwise oriented, the
following transitions can take place.

AB
λba←→
λab

B A, BC
λcb←→
λbc

C B, C D
λdc←→
λcd

DC, D A
λad←→
λda

AD,

AC
δbd←→
γac

B D, B D
δca←→
γbd

C A, C A
δdb←→
γca

DB, DB
δac←→
γdb

AC.
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We studied a rotation invariant version of this model, namely when
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ+ def= λab = λbc = λcd = λda,

λ− def= λba = λcb = λdc = λad ,

γ + def= γac = γbd = γca = γdb,

γ − def= δac = δbd = δca = δdb.

(2.4)

Define the mapping (A, B, C, D) → (τ a, τ b) ∈ {0, 1}2, such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A → (0, 0),

B → (1, 0),

C → (1, 1),

D → (0, 1).

(2.5)

The dynamics can be formulated in terms of coupled exclusion processes.
The evolution of the sample path is represented by a Markov process with state
space the set of 2N-tuples of binary random variables {τ a

i } and {τ b
i }, i = 1, . . . , N ,

taking the value 1 if a particle is present and 0 otherwise. The jump rates to the
right (+) or to the left (−) are then given by

{
λ±

a (i) = τ̄ b
i τ̄ b

i+1λ
∓ + τ b

i τ b
i+1λ

± + τ̄ b
i τ b

i+1γ
∓ + τ b

i τ̄ b
i+1γ

±,

λ±
b (i) = τ̄ a

i τ̄ a
i+1λ

± + τ a
i τ a

i+1λ
∓ + τ̄ a

i τ a
i+1γ

± + τ a
i τ̄ a

i+1γ
∓.

(2.6)

Notably, one sees the jump rates of a given sequence are locally conditionally
defined by the complementary sequence.

3. STATIONARY REGIME FOR REVERSIBLE SYSTEMS

In this section, we quote the main characteristics of the steady state distribu-
tion when the processes at stake are reversible.

3.1. The General Form of the Invariant Measure

Up to a slight abuse in the notation, we let Xk
i ∈ {0, 1} denote the binary

random variable representing the occupation of site i by a letter of type k. The state

of the system is represented by the array η
def={Xk

i , i = 1, . . . , N ; k = 1, . . . , n} of
size N × n. The invariant measure of the Markov process of interest is given by

πη = 1

Z
exp [−H(η)] , (3.1)
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where

H (η) = 1

N

∑

i< j

∑

k,l

α
(N )
kl Xk

i Xl
j , (3.2)

with α
(N )
kl and α

(N )
lk two N-dependent coefficients related by

α
(N )
kl − α

(N )
lk = N log

λkl

λlk
, (3.3)

provided that some balance conditions hold (see e.g. Ref. 22). For example, in the
clock model (2.1), these conditions take the simple form

∑

k �=l

(
α

(N )
kl − α

(N )
lk

)
Nk = 0, (3.4)

and they follow indeed directly from Kolmogorov’s criteria (applied to a particle
crossing the system), which is tantamount to detailed balance equations.

3.1.1. An Example in the Square Lattice

To show a concrete exploitation of the form (3.1), we consider the square-
lattice model introduced in Ref. 15. It does illustrate the rules (2.2). Instead of
handling the problem directly with the natural set of four letters {A, B, C, D},
we found convenient to represent the degrees of freedom by pairs of binary
components. In the symmetric version of the model defined by (2.4), when cycles
are absent (Na = Nb = 1/2 and γ + = γ −), we could derive the invariant measure

πη = 1

Z
exp

⎡

⎣β
∑

i< j

(
τ a

i τ̄ b
j − τ b

i τ̄ a
j

)

⎤

⎦ , (3.5)

with η = {(τ a
i , τ b

i ), i = 1, . . . , N } with β = log λ−
λ+ . Let us see how this relates to

the original formulation of the model in terms of the four letters A, B, C and D.

Proposition 3.1. Under the reversibility conditions imposed on the transitions
rates {λkl, γ

k, δk, k = 1, . . . , 4, l = 1, . . . , 4}, the measure given by (3.1) and
(3.2) reduces to

πη = 1

Z
exp

{
β

2

∑

i< j

Bi A j − Ai B j + Ai D j − Di A j + Ci B j

−Bi C j + Di C j − Ci D j

}

, (3.6)

and is equivalent to (3.5).
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The proof is not difficult, starting from (3.5). It can also be achieved by a
direct argument, i.e. without using (3.5), from Theorem 3.2 of Ref. 16.

3.2. Free Energy

We consider again the ABC model as a typical example, and the extension
to other models will be straightforward. Assume conditions (3.4) hold, so that the
invariant measure is given by

πη = 1

Z
exp

⎡

⎣
1

N

N∑

i< j

α
(N )
ab Ai B j + α

(N )
bc Bi C j + α(N )

ca Ci A j

⎤

⎦ ,

where the constants α
(N )
ab , α

(N )
bc and α

(N )
ca take the values

α
(N )
ab = N log

λab

λba
, α

(N )
bc = N log

λbc

λcb
, α(N )

ca = N log
λca

λac
,

while α
(N )
ba , α

(N )
cb and α

(N )
ac are set to zero, to be consistent with (3.3). The constraints

(3.4) now become

NA

NB
= α

(N )
bc

α
(N )
ca

,
NB

NC
= α

(N )
ca

α
(N )
ab

,
NC

NA
= α

(N )
ab

α
(N )
bc

. (3.7)

Following Ref. 7, we want to write a large deviation functional corresponding
to the above Gibbs measure when N → ∞. Set x = i

N , J = exp(2iπ/3), and let
Z (x) denote the complex number given by

Z (x) = 1

N

[x N ]∑

i=1

(
Ai

α
+ J

Bi

β
+ J 2 Ci

γ

)

,

where we have introduced the parameters

α
def= lim

N→∞
α

(N )
bc , β

def= lim
N→∞

α(N )
ca , γ

def= lim
N→∞

α
(N )
ab .

The sequence η = {(Ai , Bi , Ci ), i = 1, . . . , N } is thus represented by a dis-
crete path 	 in the complex plane, made of oriented links having only three possible
directions

{θ = 0, θ = 2π/3, θ = 4π/3},
depending on whether a particle A, B or C is present. The length of a link
corresponding to A, B, or C is, respectively, 1/(Nα), 1/(Nβ) or 1/(Nγ ).
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The equation of 	 is given by a function Z :
def= x → Z (x), x ∈ C. Note that

condition (3.7) ensures 	 is closed, that is

Z (1) = 1

α + β + γ

(
1 + J + J 2

) = 0.

The area A enclosed by 	 is given by

A def= 1

2i

∮

	

(z̄ dz − z dz̄),

and, for large N. this coincide with

A =
√

3

N 2

∑

l<k

Al

α

(
Bk

β
− Ck

γ

)

+ Bl

β

(
Ck

γ
− Ak

α

)

+ Cl

γ

(
Ak

α
− Bk

β

)

+ o(1).

(3.8)

As a result,

H({η}) = Nαβγ

2
√

3
A + 3Nαβγ

(α + β + γ )2
+ O(1).

The large deviation probability is easily obtained from the law of large num-
bers. It is given by

PN (ρa, ρb, ρc) = 1

Z
exp (−NF(ρa, ρb, ρc)) , (3.9)

with the free energy

F(ρa, ρb, ρc) = αβγ

2
√

3
A(ρa, ρb, ρc) − S(ρa, ρb, ρc), (3.10)

where

A(ρa, ρb, ρc)
def= √

3
∫ 1

0
dx

∫ 1

x
dy

ρa(x)

α

(
ρb(y)

β
− ρc(y)

γ

)

+ ρb(x)

β

(
ρc(y)

γ
− ρa(y)

α

)

+ ρc(x)

γ

(
ρa(y)

α
− ρb(y)

β

)

and where the entropy term comes from a multinomial combinatorial factor
η!

na !nb!nc! , namely the way of arranging a box of n = [N dx] sites, with 3 species
of identical particles having respective populations ni = ρi (x)Ndx, i ∈ {a, b, c}
Stirling’s formula for large N yields

S(ρa, ρb, ρc) = −
∫ 1

0
dx [ρa(x) log ρa(x) + ρb(x) log ρb(x) + ρc(x) log ρc(x)].
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Stable and metastable deterministic profiles correspond to local minima of
the free-energy. According to (3.10), an optimal profile is a compromise between
a maximal entropy and a minimum of the enclosed algebraic area. Curves of
maximal entropy are typically Brownian, and they have an area which scales
like 1/N ; on the other hand, the opposite extreme configuration consisting of
an equilateral triangle with negative orientation achieves the minimum algebraic
area, but belongs to a class of profiles for which the entropy contribution is equal
to zero (since ρ log ρ vanishes both for ρ = 0 and ρ = 1). Depending on the ratio
αβγ/2

√
3 of the two contributions, we obtain either Brownian (the degenerate

point of the deterministic equations, see below) or deterministic profiles, both
regimes being separated by a second order phase transition.

3.3. Lotka Volterra Systems

Under the scaling earlier defined, letting N → ∞, we show on two examples
that the limiting invariant measure is the solution of a non-linerar differential
system of Lotka–Volterra type.

3.3.1. Urn Model

Consider three species, denoted by {A, B, C}, and let N (N )
a (t), N (N )

b (t) and

N (N )
c (t) be the corresponding time-dependent populations. The system is closed,

Na + Nb + Nc = N . At random times taken as exponential events, individuals
do meet and population transfer take place at rates α, β, γ , associated with the
reactions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AB →
γ

B B,

BC →
α

CC,

C A →
β

AA.

This zero-range process is an urn-type model of Ehrenfest Class, as de-
fined in Ref. 19, where indivivuals, rather than urns, are chosen at random.
When N increases to infinity, we rather consider concentrations instead of integer
numbers:

ρi (t)
def= lim

N→∞
N (N )

i (t)

N
,
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for i = a, b, c. After a proper scaling limit, the dynamics of the model is described
by the following Lotka–Volterra system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ρa

∂x
= ρa(βρc − γρb),

∂ρb

∂x
= ρb(γρa − αρc),

∂ρc

∂x
= ρc(αρb − βρa),

which, after replacing x by t and densities by concentrations, is nothing else but
the differential system giving the invariant measure of the (A, B, C) model, in the
fluid limit at thermodynamical equilibrium.(7)

3.3.2. The Square Lattice Model

From (3.6), one can write down the large deviation functional
F(ρA, ρB, ρC , ρD) [as in (3.9)], together with the conditions ensuring an opti-
mal profile. This leads again to a differential system of Lotka–Volterra class

∂ρA

∂x
= ηρA(ρB − ρD),

∂ρB

∂x
= ηρB(ρC − ρA),

∂ρC

∂x
= ηρC (ρD − ρB),

∂ρD

∂x
= ηρD(ρA − ρC ), (3.11)

in which the last equation follows merely by summing up the three other ones. This
system is structurally different from the one obtained in Ref. 15, which involved
only two independent profiles (ρa, ρb) corresponding to deterministic densities for
the particles τa and τb, while in the present case there are three (ρA, ρB , ρC for
example).

It is interesting to notice that, in both models, explicit level surfaces exist.
Indeed, the above system satisfies ρAρBρCρD = cte, in addition to constraint
ρA + ρB + ρC + ρD = 1. On the other hand, ρa(1 − ρa)ρb(1 − ρb) is the level
surface of the former system encountered in Ref. 15. This can be explained by
reversing the mapping (3.13), so that

Ai = τ̄ a
i τ̄ b

i , Bi = τ a
i τ̄ b

i ,

Ci = τ a
i τ b

i , Di = τ̄ a
i τ b

i . (3.12)

This indicates that the set of 4-tuples {τ a
i , τ̄ a

i , τ b
i , τ̄ b

i } constitutes the elemen-
tary blocks of the system, and that letters Ai , Bi , Ci , Di are composite variables
encoding correlations of these building blocks. Therefore, in the continuous limit,
we are left with two different descriptions of the same system, related in a non
trivial manner. We propose now to explore more carefully this connection. In
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particular, while the linear mapping
{

τ a
i = Bi + Ci , τ̄ a

i = Ai + Di ,

τ b
i = Ci + Di , τ̄ a

i = Ai + Bi ,
(3.13)

still holds in the continuous limit, as a relation between expected values
{

ρa = ρB + ρC ,

ρb = ρC + ρD,
(3.14)

the non-linear equation (3.12) are instead expected to bring a different form, since
they involve correlations.

Proposition 3.2. The differential system given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂x

[

log
ρa(x)

1 − ρa(x)

]

= 2η(2ρb(x) − 1),

∂

∂x

[

log
ρb(x)

1 − ρb(x)

]

= −2η(2ρa(x) − 1),

(3.15)

is related to (3.11) through the invertible functional mapping given by
{

ρA = ρ̄a ρ̄b + K , ρB = ρa ρ̄b − K ,

ρC = ρaρb + K , ρD = ρ̄aρb − K ,
(3.16)

where K is a constant to be determined.

Proof: First, let {ρB, ρC , ρD} be the set of independent variables in (3.11), and
express them in terms of the new triple {ρa, ρb, ρc} given by (3.14). This gives

∂(ρa − ρC )

∂x
= η(ρa − ρC )(ρa + ρb − 1),

∂(ρb − ρC )

∂x
= η(ρb − ρC )(1 − ρa + ρb), (3.17)

∂ρC

∂x
= ηρC (ρb − ρa).

Combining these equations yields
⎧
⎪⎨

⎪⎩

∂ρa

∂x
= ηρa(ρa + ρb − 1) + ηρC (1 − 2ρa),

∂ρb

∂x
= ηρb(1 − ρa − ρb) + ηρC (2ρb − 1),

(3.18)
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which in turn allows to express ρC as

ρC = 1

ρa − ρb

(

ρa
∂ρb

∂x
+ ρb

∂ρa

∂x

)

.

Instantiating this last value of ρC in (3.18) and in (3.17), we obtain (3.15),
after immediate recombination, together with the relation

∂ρC

∂x
= ∂(ρaρb)

∂x
.

This last equation has its counterpart for ρA, ρB and ρD: after integration,
we are left with four constants, which reduce to the one given in (3.16) only when
compatibility with (3.14) is imposed. �

4. NON-GIBBS STEADY STATE REGIME

We call non-Gibbs steady state regime, a regime for which the invariant
measure is not described by means of a potential. This occurs when reversibility is
broken, that is when there exists at least one cycle in the state graph for which the
Kolmogorov criteria fails. A complete set of detailed balanced equations cannot
be written in such a case, there exist at least two states η and η′, connected by a
single particle jump, with rate ληη′ and λη′η such that

ληη′πη − λη′ηπη′ = φ �= 0, (4.1)

if πη denotes the invariant measure. It is the second member of this equation
we wish to study in this section. In the sequel we note S the state space, G the
corresponding state graph, by assigning oriented edges between pair of nodes
(α, β) ∈ S2, when the rate λαβ is non-zero, C will denote a cycle in G and we
denote T the set of spanning trees on G.

4.1. The Tagged Particle Cycle

Cycles in the state graph for the n odd model are important in the analysis
of reversibility, and they are the ones for which at least one particle performs
a complete round-trip. For example if a given particle makes N − 1 successive
jumps to the right, because of the circular geometry, the initial and final states
are identical, up to a 1-step global shift to the left of the particles. As long as
this particle is the only one in movement, the permutation order of the remain-
ing other N − 1 particles is kept frozen. The corresponding subsequence η(N−1)

will in the sequel denote these specific cycles. Let us examine this one particle
model, by tagging a specific particle which is given a new label Y , and by fol-
lowing its motion conditionally on η∗ = {Xk

i , i = 1, . . . , N , k ∈ {1, . . . , n}}, the
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complementary frozen set of particles. This is equivalent to consider Y moving
in the inter-sites {i + 1/2, i = 0, . . . , N − 1} of the N − 1 frozen particles. The
question is then to analyze the steady-state regime of a particle moving around
a circular lattice in a random environment. To any allowed transition which is a
jump of Y between sites i − 1

2 and i + 1
2 , we let correspond the set of conditional

transition rates given by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ+
y (i) =

n∑

k=1

λyk Xk
i ,

λ−
y (i) =

n∑

k=1

λky Xk
i .

Violation of condition (3.4) leads to

det(η∗)
def=

N−1∏

i=0

λ+
y (i)−

N−1∏

i=0

λ−
y (i) �= 0. (4.2)

The coefficient det(η∗), attached to the cycle η∗, is exactly the determinant of the
system of flux equations

λ+
y (i)πi− 1

2
− λ−

y (i)πi+ 1
2

= φ(η∗), i = 0, . . . , N − 1, (4.3)

giving the invariant measure πi+ 1
2
, which reads

πi+ 1
2

= 1

Z

N∑

i=1

exp

⎧
⎨

⎩

n,N∑

m=1

∑

l+1< j<i

Xm
j log λym +

∑

i< j<l

Xm
j log λmy

⎫
⎬

⎭
,

i = 0, . . . , N − 1,

where Z is a normalization constant. A diagramatic representation of each term
in the summation (over l) is given in Fig. 1b. Each term is in fact a spanning tree
on the reduced tagged-particle state-graph, weighted by the transitions rates and
rooted at the considerd point (i + 1

2 for πi+ 1
2
). The constant Z is therefore the sum

of all spanning-trees on the reduced tagged-particle state-graph. The probability
current between site i − 1

2 and site i + 1
2 reads

λ+
y (i)πi− 1

2
− λ−

y (i)πi+ 1
2

= 1

Z

[

exp

(
n∑

m=1

Nm log λym

)

− exp

(
n∑

m=1

Nm log λmy

)]

,

with Nm the number of particles of type m, a quantity independent of i . This shows
that φ(η∗) is a quantity attached to the cycle η∗, which will be referred to as cycle
current and reads

φ(η∗) = 1

Z
det(η∗). (4.4)
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(a) (b)

Fig. 1. (a) Relative motion of the tagged particle. (b) Corresponding state space and a spanning tree
contribution to π5.

Depending on the sign of det(η∗), the diffusion of particle Y is biased in the
right (det(η∗) > 0) or in the left (det(η∗) < 0) direction. Of course the reversible
case is recovered when the determinant vanishes, which corresponds exactly to
Kolmogorov’s criterion.

4.1.1. Case of Open Systems: Example of ASEP

Consider the well studied asymmetric simple exclusion process ASEP with
open boundary conditions, defined by α the rate of particle entering to the left side
and β the rate at which particles exit from the right side. The generalization to open
systems of our definition of the tagged particle cycle (TPC) is depicted in Fig. 2a.
We adopt the convention for the cycle orientation that particles move positively to
the right and holes to the left. Assume we give a tag to one of the particles. Let it
perform successive jumps until reaching the right side; when it leaves the system
it is in fact transformed into a hole; We keep the tag attached to the hole which
performs successive jumps in the opposite direction until it reaches the left side;
again it transformed back into a particle which in turn performs jumps to the right
until the reaching of the initial position, to conclude the cycle.

Fig. 2. Example of a tagged particle cycle in the state graph for ASEP with 7 particles and open
boundary.
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4.2. Combinatorial Formulas for Invariant Measure and Currents

We give here a combinatorial way of expressing the stationary measure on a
connex finite state space S of size N , the number of states. Consider a continuous-
time irreducible Markov chain, with transition rates λαβ between states α and β,
and define the corresponding state graph G based on S by assigning oriented edges
between pair of nodes (α, β), for any non-zero corresponding rate λαβ .

Proposition 4.1. The invariant measure πα is given by

πα =
∑

t∈Tα
w(t)

∑
t∈T w(t)

(4.5)

where T is the set of spanning tree over G, Tα is the set of spanning tree over G
rooted in α, and w(t) the weight of a tree t given by

w(t) =
∏

(α,β)∈t

λα,β .

Proof: This is nothing else but the well known Markov-chain tree theorem. For
a probabilistic proof, see Ref. 1 and references therein. A purely algebraic proof
consists in rewriting the solution of the steady-state equation

παGαβ = 0, ∀β ∈ S,

where G is the generator, and Gαβ = −
(∑

γ λαγ

)
δαβ + λαβ , using the Cramer

relation. Indeed, since

N∑

β=1

Gαβ = 0,

the set of steady-state equations is of rank N − 1 and πα can be written as the
ratio of two determinants, namely the cofactor G̃αN of GαN and the determinant
|G̃| of the matrix obtained from G by replacing GβN by 1 for all β = 1, . . . ,N .
Since G has a structure of an admittance-matrix, the expansions of G̃αβ and |G̃|
are tantamount to summing over spanning trees, so that

G̃αN =
∑

t∈Tα

w(t), |G̃| =
∑

t∈T
w(t),

which yields formula (4.5). �

From this observation, we deduce a way to express the probability currents
at steady-state, which generalizes formulas (4.3) and (4.4). First call det(C) a
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coefficient attached to each cycle C ,

det(C)
def=

∏

(γ,δ)∈C

λγ δ−
∏

(γ,δ)∈C

λδγ ,

generalizing (4.2) and where the orientation of C is prescribed by the orientation
of (α, β) and the product over the set (γ, δ) ∈ C , is understood according to this
orientation. Let Cαβ the set of cycles in G containing the oriented edge (α, β). Let
TC a set of subgraph of G, s.t. when C is glued into a single node αC , TC represents
the set of spanning trees rooted in αC .

Lemma 4.2. The steady state current between states (α, β) ∈ S2 is given by

λαβπα − λβαπβ =
∑

C∈Cαβ

∑
t∈TC

w(t)
∑

t∈T w(t)
det(C). (4.6)

Proof: When πα is multiplied by λαβ , each spanning tree contribution is trans-
formed by drawing an oriented edge between α and β. Since the spanning tree
contains by construction of πα a path going from β to α, the added edges con-
tributes to the forming of a cycle which contains α and β. If each oriented edge
in this cycle have a reversed counterpart, then in λβαπβ there is to be found a
corresponding term with the same edges but with reversed orientation in the cycle
(see Fig. 3). In any case, det(C) factors out of an ensemble of contributions which
consist in drawing trees spanning all the subgraph G with endpoints on C , divided
by the global normalization constant

∑
t∈T w(t). This complete the justification

of formula (4.6). �

Note that
∑

t∈TC
w(t) in (4.6) represents the unormalized invariant measure

of αC on the reduced graph G/C. This indicates that (4.6) bears recursive properties
which could be used for asymptotic limits when the size of the system tends to
infinity. Let us call C a reversible [resp. non-reversible] cycle if det(C) = 0 [resp.
det(C) �= 0]. In the loop expansion of the currents provided by (4.6), only non-
reversible cycles do contribute. For particle system, this distinction is embedded
into a topological classification of cycles with respect to their corresponding
determinant value det(C).

4.2.1. Connection with the Matrix Ansatz for ASEP

For the ASEP model, a simple algorithm has been discovered(10) to obtain
the steady-state probabilities of each individual state with the help of a matrix
ansatz. In this representation, a given sequence η = 1010 . . . 00 is represented by
a product of matrices D (for 1) and E (for 0), and the corresponding probability
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Fig. 3. (a) State-graph with N = 8 states. Arrows indicates possible transitions. (b) A contribution to
π0. (c) A contribution to π4. (d) A combined contribution to J14.

measure is obtained by taking the trace

πη = 1

Z
Tr (W DE DE . . . E E) ,

where W is an additional matrix which takes into account the boundary property.
A sufficient condition for this to be the invariant measure is that D, E, W satisfy

λ10 DE − λ01 E D = D + E

DW = 1

β
W

W E = 1

α
W. (4.7)

If λ01 = 0, the process is totally asymmetric ( TASEP), particles can jump only to
the right. Consider the system with only 3 sites, which graph is depicted in Fig. 4.
Using these rules we find e.g. that

π000 = 1

Z
α3 (4.8)

π100 = 1

Z

((
1

α
+ 1

β

)
1

λ2
+ 1

α2λ

)

. (4.9)

Comparison with the spanning tree expansion is done by counting deletions.
A spanning tree is obtained from the complete graph by the deleting of a certain
number of edges, and each deletion is accounted for by dividing with respect to
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Fig. 4. (a) Graph of the state space for a TASEP with three particles and the dual graph corresponding
to the possibles cycles. (b) Spanning tree contributions to π000.

the corresponding transition rate. The set of spanning trees contributing to π000 is
given in Fig. 4b. The brut result (without normalization is):

π000 ∝
(

1

αβ
+ 1

αβ
+ 1

βλ

)

α3 (4.10)

π100 ∝
(

1

αβ
+ 1

αβ
+ 1

βλ

)((
1

α
+ 1

β

)
1

λ2
+ 1

α2λ

)

. (4.11)

The factor ( 1
αβ

+ 1
αβ

+ 1
βλ

) shows up for each state, and disapears after nor-
malization. Nervertheless, it induces in this simple example a factor of 3 in the
enumeration of terms, by comparison with the matrix ansatz. An underlying sym-
metry of the state graph is at the origin of this combinatorial factor. Indeed for the
ASEP system, the steady-state probability current between two sequences η and
η′ separated by a single jump between site i and i + 1 reads,

λ10π
(N )
η − λ10π

(N )
η′ = π

(N−1)
η∗

i
+ π

(N−1)
η∗

i+1
, (4.12)

as a consequence of (4.7), with the subsequence η∗
i [resp. η∗′

i+1] of η obtained by
deleting bit i [resp. i + 1]. We have not been able yet to fill the gap between (4.6)
and (4.12). We believe that the combinatorial arrangement which occur is due to
a hierarchical structure of the state-graph, revealed with the help of the tagged
particle. The complete analysis of (4.6) is the subject of another work in progress.
Beforehand, in the next sections, we simply propose a possible general form for
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the detailed current Eq. (4.1), which leads (see Sec. 4.4) to the correct form of the
Lotka–Volterra equations describing the fluid limits at steady state.

4.3. Cycle Currents

We interpret relation (4.12) in terms of cycle currents. A transition taking
place between two particles of different types, say AB → BA, can be viewed either
as a particle A travelling to the right or, conversely, as a particle B travelling to
the left. In this exchange two joint TPC are involved. In the state-graph, each TPC
defines a face, which we will identify with a subsequence η∗, obtained from η by
removing the tagged particle. Accordingly, we attach a set of variables {φ(η∗)} ∈ R

to each TPC face, while currents between states are variables attached to the edges
of the graph. Conservation of probability currents at a given node is automatically
fulfilled, provided that if one write (assuming a transition between site i and i + 1,
see Fig. 5),

λabπη − λbaπη′ = φa(η∗
i ) − φb(η∗

i+1), (4.13)

which is tantamount to changing current variables into cycle variables.
The right-hand side members in (4.7) and (4.12) is reminiscent of the second

member of (4.13). In fact we have

φa(η∗
i ) = Tr (Wη∗

i )

φb(η∗
i+1) = −Tr (Wη∗

i+1).

Ca1 : ABBC
Ca2 : ABCB
Ca3 : ACBB
Cb1 : AABC
Cb2 : AACB

Cc1 : AABB
Cc2 : ABAB

Cb3 : ABAC

E1 : AABBC
E2 : AABCB
E3 : AACBB
E4 : ABABC
E5 : ABACB
E6 : ACABB

Ca1
Ca2

Ca3

Cc1

Cc2Cb3

Cb1
Cb2

q

1

q

q

q

2 1
1

2

1 1
1

1

1

2

1

E3

E6

E4

E5

E2

E1

Cb2

Cb1

Ca2

Ca1

Cb3

Ca3

Cc1 Cc2

Fig. 5. Graph of the state space for a an asymmetric ABC model with five particles, (A, A, B, B, C)
and the dual graph corresponding to the possible cycles.
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With each edge of the state-graph, we associate such an extended detailed
balance equation. Then, eliminating all φ’s from this set of equations leads to the
invariant measure equation. Consider the example given in Fig. 5. The transition
rules are

AB
1→ B A AC

1→ C A BC
1

←→
q

C B.

The various weights corresponding to each sequence and subsequence asso-
ciated with cycles are given in the following table, for q = 0 and q = 1. Note that
one should expect πc1 = 1

3 and πc2 = 2
3 from the subgraph of Fig. 5. The correc-

tion results from the different degeneracy w.r.t. circular permutation symmetry (4
for C1 and 2 for C2).

π1 π2 π3 π4 π5 π6 πa1 πa2 πa3 πb1 πb2 πb3 πc1 πc2 Ca Cb Cc

q = 0 1
10

1
10

3
10

1
10

2
5

2
5

1
4

1
4

1
2

1
6

1
2

1
3

1
2

1
2

2
5 0 − 1

5

q = 1 1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
3

1
3

1
3

1
2

1
2

32
105 − 41

210 − 41
315

In this two cases one has the decomposition of the dual variables φ of relation
(4.13) according to

φx (η∗) = Cxπη∗ with x ∈ {a, b, c} (4.14)

with the value of the structure coefficient also given in the table. For example we
have

π1 − qπ2 = Cbπb1 − Ccπc1.

This decomposition is however not valid for arbitrary q. A certain number
of compatibility constraint have to be imposed on the φ′, because the TPC do
not constitute a complete bases of cycles in the state graph. When considering
the complete system (4.13) of detailed currents, we have at hand m equations, m
being the number of edges of the state-graph, and n + νtpc unknowns, where n is
the number of nodes and νtpc the number of TPC. In matrix form, this reads

M� = � (4.15)

where

• M is a m × n matrix;
• � a column vector of size n, with the elements the invariant probability

measure;
• � is a column vector of size m, where each component l is the algebraic

contribution of the (two in general) TPC having the edge corresponding to
l in common.
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To fix the sign conventions, we agree that orientations of cycles are given by
the natural orientation of the system, i.e. each particle travels positively from left
to right. An exception is made for the simple exclusion system, since in this case
holes travel positively to the left and there is only one type of TPC.

λ10πη − λ01πη′ = φ(η∗
i ) + φ(η∗

i+1) for ASEP,

λabπη − λbaπη′ = φa(η∗
i ) − φb(η∗

i+1) for multi-type systems,

(with (i , i + 1) the sites involved in the transition). From basic graph theory (see
Ref. 3), the quantity giving the number of independent cycles in an arbitrary graph
G is called the cyclomatic number

ν(G) = m − n + p,

where n, m and p are respectively the number of nodes, edges and components. In
our cases, the system is irreducible, so p = 1. Since m is the number of equations
and n + νtpc the number of unknown, the system is over-determined by a quantity

m − (n + νtpc) = ν − νtpc − 1.

This over-determination is understood as follows. To each line of the matrix
M corresponds a transition between two states, so that a given cycle in the state-
graph corresponds to some combination of lines of M (namely the successive
transitions taking part in the cycle), and the resulting sub-matrix is a square matrix
of size the number of states visited by the cycle. The corresponding determinant
vanishes for all trivial cycles. Hence the number of independent equations is
m − ν + νtpc, which is equal to the number of unknown minus 1, the remaining
degree of freedom being related to the global normalization condition. However, a
certain number of compatibility conditions have to be imposed on the φ’s in order
to eliminate safely all dependent equations of our system (4.15). These conditions
are somehow related to the basic recurrence scheme which is at the origin of
matrix-solutions obtained in the context of ASEP, but also for multi-type particle
systems.(2) Let us see how the specific form (4.14) encountered precedingly do
combine with these compatibility conditions.

Lemma 4.3. The form

φ(N )
a (η∗) = C (N )

a π
(N−1)
η∗ , (4.16)

of the cycle currents fulfills the compatibility condition imposed by trivial cycles
if and only if

C (N )
a C (N−1)

b = C (N )
b C (N−1)

a ∀ a, b ∈ {1, . . . , n}.
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. . . AB . . . CD . . . . . . BA . . . CD . . .

. . . AB . . . DC . . .

λab

λdc

λba

λdc
(c)

λab

λba

λcdλcd

. . . BA . . . DC . . .

Fig. 6. Example of a reversible cycle.

Proof: Instead of proving this for an arbitrary trivial cycle, we do it for the one
depicted in Fig. 6, the completion of the general case follows by recurrence, since
any trivial cycle can be constructed as a combination of cycle of this type. To fix
some notation, let η1, η2, η3 and η4 be the states visited by the cycle, with i the
position of A and j the position of C in η1, so that

η1 = . . . AB . . . CD . . . η1∗
i = . . . B . . . CD . . . η1∗

i+1 = . . . A . . . CD . . .

η2 = . . . BA . . . CD . . . η2∗
j = . . . BA . . . D . . . η2∗

j+1 = . . . BA . . . C . . .

η3 = . . . BA . . . DC . . . η3∗
i = . . . A . . . DC . . . η3∗

i+1 = . . . B . . . DC . . .

η4 = . . . AB . . . DC . . . η4∗
j = . . . AB . . . C . . . η4∗

j+1 = . . . AB . . . D . . .

The sub-system of (4.15) corresponding to this cycle reads

λabπη1 = λbaπη2 = φa

[
η1∗

i

] − φb

[
η1∗

i+1

]
, (a)

λcdπη2 − λdcπη3 = φc

[
η2∗

j

] − φd

[
η2∗

j+1

]
, (b)

λbaπη3 − λabπη4 = φb

[
η3∗

i

] − φa

[
η3∗

i+1

]
, (c)

λdcπη4 − λcdπη1 = φd

[
η4∗

j

] − φc

[
η4∗

j+1

]
. (d)

As already noted, these equations are not independent. Hence the combination
λcd (a) + λba(b) + λdc(c) + λab(d) eliminates one equation, but with the resulting
constraint on the φ’s:

λcdφa

[
η1∗

i

] − λdcφa

[
η3∗

i+1

] + λdcφb

[
η3∗

i

] − λcdφb

[
η1∗

i+1

]

+ λbaφc

[
η2∗

j

] − λabφc

[
η4∗

j+1

] + λabφd

[
η4∗

j

] − λbaφd

[
η2∗

j+1

] = 0. (4.17)

η1∗
i and η3∗

i+1 are in correspondence through the transition C D → DC at site
j, j + 1, as well as η2∗

j and η4∗
j+1 with respect to the transition AB → B A at site
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i, i + 1 . . . From the hypothesis of the lemma, (4.17) rewrites

C (N )
a

(
C (N−1)

c π
(N−2)
η1∗∗

i, j
−C (N−1)

d π
(N−2)
η1∗∗

i, j+1

)
+ C (N )

b

(

C (N−1)
d π

(N−2)

η
(3∗∗)
i, j

−C (N−1)
c π

(N−2)
η3∗∗

i, j+1

)

+ C (N )
c

(
C (N−1)

b π
(N−2)
η2∗∗

i, j
−C (N−1)

a π
(N−2)
η2∗∗

i+1, j

)
+C (N )

d

(
C (N−1)

a π
(N−2)
η4∗∗

i, j
−C (N−1)

b π
(N−2)
η4∗∗

i+i, j

)
=0,

where η1∗∗
i, j is the sequence obtained from η1 by suppressing letters at site i and

j . The elimination of letters in sequences is a commutative process, therefore this
last equality holds because of the following identities:

η1∗∗
i, j = η2∗∗

i+1, j , η3∗∗
i, j = η4∗∗

i+1, j , η2∗∗
i, j = η3∗∗

i, j+1, η4∗∗
i, j = η1∗∗

i, j+1. �

The complete study to establishing the range of validity of the recurrence
relation (4.13) altogether with (4.16) is the object of another work in progress.
We expect that in general this relation to be valid only asymptotically for large
N, which could be proved possibly by selecting the dominant terms in the
expansion (4.6).

4.4. Fluid Limits

In this section we examine how the microscopic coefficients C (N )
k , whenever

(4.16) holds, can be transposed at macroscopic level and how they are related
to important coefficients showing up in the Lotka–Volterre equations of the fluid
limit. Using the preliminary study,(17) where a new functional method was intro-
duced to handle the hydrodynamic limit of a simple exclusion process, we consider
hereafter the n-type case.

4.4.1. Functional Approach

Let φk, k = 1, . . . , n a set of arbitrary functions in C2[0, 1], G(N ) def= Z/NZ

the discrete torus (circle). For i ∈ G(N ), Xk
i (t) is a binary random variable and, at

time t , the presence of a particle of type k at site i is equivalent to Xk
i (t) = 1. The

exclusion constraint reads

n∑

k=1

Xk
i (t) = 1, ∀ i ∈ G.

The whole trajectory is represented by η(N )(t)
def={Xk

i (t), i ∈ G(N ), k =
1, . . . , n} which is a Markov process. �(N ) will denote its generator and F (N )

t =
σ (η(N )(s), s ≤ t) is the associated natural filtration.
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Define the real-valued positive measure

Z (N )
t [φ]

def= exp

⎡

⎣
1

N

n∑

k=1,i∈G(N )

φk

(
i

N

)

Xk
i

⎤

⎦ ,

where φ denotes the set {φk, k = 1, . . . , n}. In Ref. 17 the convergence of this
measure was analyzed for n = 2. A functional integral operator was used to
characterize limit points of this measure, these were shown to be indeed the
unique weak solution of a partial differential equation of Cauchy type.
In what follows, we will be interested in the quantities

⎧
⎨

⎩

f (N )
t (φ)

def= [
E
(
Z (N )

t [φ]
)]

,

g(N )
t (φ)

def= log
[
E
(
Z (N )

t [φ]
)]

,

respectively the moment and cumulant generating function. The idea of using
Z (N )

t [φ] is that the generator, when applied to Z (N )
t , can be expressed as a differ-

ential operator with respect to the arbitrary functions φ. Indeed, we have

�(N )
[
Z (N )

t

] = L (N )
t Z (N )

t ,

with

L (N )
t = N 2

∑

k �=l,i∈G(N )

λ̃kl
∂2

∂φk

(
i
N

)
∂φl

(
i+1
N

) ,

after having set.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�ψkl

(
i

N

)
def= φk

(
i + 1

N

)

− φk

(
i

N

)

+ φk

(
i

N

)

− φl

(
i + 1

N

)

,

λ̃kl(i, N )
def= 2λkl(N )e

�ψkl( i
N )

2N sinh

(
�ψkl

(
i
N

)

2N

)

.

We introduce now the key quantities for hydrodynamic scalings, by assuming
an asymptotic expansion of the form

λkl(N ) = D
(

N 2 + αkl

2
N
)

+ O(1), ∀k, l k �= l,

where αkl = −αlk are real constants. Here the system is assumed to be equidiffu-
sive, which means there exists a constant D such that, for all pairs (k, l),

lim
N→∞

λkl(N )

N 2
= D.

From now on we will omit the argument of λkl(N ) and retain the initial
notation λkl . The coefficients αkl express the asymmetry between types k and l.
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Now one can write

∂ f (N )
t

∂t
= N 2

n∑

k �=l, i∈G(N )

λ̃kl(i, N )
∂2 f (N )

t

∂φk

(
i
N

)
∂φl

(
i+1
N

) . (4.18)

To rearrange the sum in (4.18), in order to select dominant terms in the
expansion with respect to 1/N , we make use of the exclusion property, which is
formally equivalent to

n∑

k=l

∂

∂φk

(
i
N

) = 1

N
.

Since we are on the circle i ∈ G(N ), Abel’s summation formula does not
produce any boundary term, so that, skipping details, (4.18) can be rewritten as

∂ f (N )
t

∂t
= DN 2

n∑

k=1, i∈G(N )

[

φk

(
i + 1

N

)

− φk

(
i

N

)][
∂ f (N )

t

∂φk

(
i
N

) − ∂ f (N )
t

∂φk

(
i+1
N

)

+1

2

∑

l �=k

αkl

(
∂2 f (N )

t

∂φk

(
i
N

)
∂φl

(
i+1
N

) + ∂2 f (N )
t

∂φl

(
i+1
N

)
∂φk

(
i
N

)

)⎤

⎦+ O(N−1).

(4.19)

It is worth remarking that operators like ∂

∂φk( i
N ) and φk

(
i+1
N

) − φk

(
i
N

)
pro-

duce a scale factor 1/N , while ∂

∂φk( i
N ) − ∂

∂φk( i+1
N ) and ∂

∂φk( i+1
N )

∂

∂φl( i
N ) scale as 1/N 2:

this explains the selection of dominant terms in the above expansion.
Let N → ∞ and assume the convergence of the sequence f (N )

0 . Then, from
the tightness of the process, together with a zeste of variational and complex
variable calculus, as in Ref. 17, we claim [the proof is omitted] f (N )

t also converges,
in a good tempered functional space, and its limit ft satisfies the functional integral
equation

∂ ft

∂t
= D

∫ 1

0
dx

n∑

k=1

φk(x)
∂

∂x

⎡

⎣
∂

∂x

∂ ft

∂φk(x)
−

∑

l �=k

αkl

(
∂2 ft

∂φk(x)∂φl(x)

)
⎤

⎦ .

Similarly, the cumulant characteristic function is a solution of

∂gt

∂t
= D

∫ 1

0
dx

n∑

k=1

φk(x)
∂

∂x

[
∂

∂x

∂gt

∂φk(x)

−
∑

l �=k

αkl

(
∂gt

∂φk(x)

∂gt

∂φl(x)
− ∂2gt

∂φk(x)∂φl(x)

)]

. (4.20)
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Assume at time 0 the given initial profile ρk(x, 0) to be twice differentiable
with repect to x . Then (4.20) is given by

gt (φ) =
∫ 1

0
dx

n∑

k=1

ρk(x, t)φk(x),

where ρk(x, t) satisfy the hydrodynamic system of coupled Burger’s equations

∂ρk

∂t
= D

⎡

⎣
∂2ρk

∂x2
+ ∂

∂x

⎛

⎝
∑

l �=k

αlkρkρl

⎞

⎠

⎤

⎦ , k = 1, . . . , n

with a set of given initial conditions ρk(x, 0), k = 1, . . . , n.

Remark. It is important to note that, without differentiability conditions for the
intial profiles ρk(x, 0), one can only assert the existence of weak solutions (in the
sense of Schwartz’s distributions) of Burger’s system.

4.4.2. Functional Equation at Steady-State

Theorem 4.4. Consider a particle system of size N, with rules 2.1, with n types of
particles and periodic boundary conditions. Assume the detailed current equations
holds, for any pair of particle types k and l,

λ
(N )
kl πη − λ

(N )
lk πη′ = C (N )

k π
(N−1)
η∗

i
− C (N )

l π
(N−1)
η∗

i+1
, k, l = 1, . . . , n. (4.21)

Then the limit functional f∞[φ] = limN→∞ f (N )
∞ [φ], where

f (n)
∞ [φ] =

∑

{η}
πη exp

⎛

⎝
1

N

n,N∑

k=1, i=1

Xk
i φk

(
i

N

)
⎞

⎠,

satisfies the equation

∂

∂x

∂ f∞
∂φk(x)

+
∑

l �=k

αkl
∂2 f∞

∂φk(x)∂φl(x)
= ck f∞ − v

∂ f∞
∂φk(x)

, (4.22)

under the fundamental scaling

lim
N→∞

log
λ

(N )
kl

λ
(N )
lk

= αkl and ∀l �= k, lim
N→∞

N 2C (N )
k

λ
(N )
kl

= lim
N→∞

C (N )
k

D
= ck,

with

v
def=

n∑

l=1

ck .
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Proof: We use the notation of Sec. 4.4. In order to extract additional informa-
tion at steady state, we refine our preceding variational analysis by defining the
functional

T (N )({φ, ∂xφ}) = N 2

2

[
n,N∑

k=1,i=1

λ̃
(N )
kl

∂2

∂φl

(
i
N

)
∂φk

(
i+1
N

)

+ λ̃
(N )
lk

∂2

∂φk

(
i+1
N

)
∂φl

(
i
N

)

]

f (N )
∞ , (4.23)

which corresponds to the second member of Eq. (4.18) at steady state,

and where it is understood that the sets {φ} def={φ( i
N ), i = 1, . . . , N } and

{∂φ} def={ ∂φ

∂x ( i
N ), i = 1, . . . , N } are taken as independant parameters. This func-

tional can be writen in two different manners. Recalling the definitions

�ψkl(i)
def= φk(i + 1) − φk(i) − φl(i + 1) + φl(i)

def= �ψk(i) − �ψl(i),

Eq. (4.23) may be rewritten in the form

T (N )({φ, ∂xφ}) = N D
n,N∑

k=1,i=1

∂xφk

(
i

N

)[
∂ f (N )

∞
∂φk

(
i
N

) − ∂ f (N )
∞

∂φk

(
i+1
N

)

+
∑

l �=k

αkl

2

(
∂2 f (N )

∞
∂φk

(
i
N

)
∂φl

(
i+1
N

) + ∂2 f (N )
∞

∂φk

(
i+1
N

)
∂φl

(
i
N

)

)⎤

⎦ + O
(

1

N

)

. (4.24)

On the other hand, combining the sums in (4.23) yields

T (N ) ({φ, ∂xφ}) = N 2
n,N∑

k,l=1,i=1

∑

{η}
e

1
N

�φ,�η+ 1
2N �ψkl (i) sinh

�ψkl(i)

2N

× Xk
i Xl

i+1

[
λ

(N )
kl π (N )

η − λ
(N )
lk π

(N )
Ti η

]
, (4.25)

where η is a given configuration, Tiη being the one obtained from η by exchanging
i and i + 1, and the shorthand notation

�φ, �η =
n,N∑

k=1,i=1

Xk
i φk

(
i

N

)

.
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From the assumptions in the statement of the proposition, we can rewrite
(4.25) as

T (N ) ({φ, ∂xφ}) = N 2
n,N∑

k,l=1,i=1

∑

{η}
e

1
N

�φ,�η+ 1
2N �ψkl (i) sinh

�ψkl(i)

2N

× Xk
i Xl

i+1

[
C (N )

k π
(N−1)
η∗

i
− C (N )

l π
(N−1)
η∗

i+1

]
, (4.26)

where η∗
i is the sequence obtained from η by removing the site i . We also

have
∑

{η}
Xk

i πη∗
i
e

1
N

�φ,�η = f (N−1)
∞ [φ∗

i ]e
1
N φk( i

N ),

where f (N−1)
∞ [φ∗

i ] means that f (N−1)
∞ is considered as a function of the n(N − 1)

variables {φk( i
N ), k = 1, . . . , n; j = 1, . . . , N , j �= i}. Using all these ingredi-

ents, expanding (4.26) in powers of 1
N and keeping the dominant terms, we get

T (N ) ({φ, ∂xφ}) = N 2

2

n,N∑

k,l=1,i=1

�ψkl(i)

[

C (N )
k

∂ f (N−1)
∞

∂φl

(
i+1
N

) − C (N )
l

∂ f (N−1)
∞

∂φk

(
i
N

)

]

+ O 1

N
.

(4.27)
Now, rearranging the summation, using the exclusion property

n∑

l=1

∂

∂φl

(
i
N

) = 1

N
,

comparing (4.24) and (4.27), we finally obtain

N 2
n,N∑

k=1,i=1

∂xφk

(
i

N

)[
∂ f (N )

∞
∂φk

(
i
N

) − ∂ f (N )
∞

∂φk

(
i+1
N

)

+ αkl

2

(
∂2 f (N )

∞
∂φk

(
i
N

)
∂φl

(
i+1
N

) + ∂2 f (N )
∞

∂φk

(
i+1
N

)
∂φl

(
i
N

)

)]

= N 2
n,N∑

k,i=1

∂xφk

(
i

N

)[
C (N )

k

D
f (N−1)
∞ −

n∑

l=1

C (N )
l

D

∂ f (N−1)
∞

∂φk

(
i
N

)

]

+ O
(

1

N

)

.

As the last equality holds for any ∂xφk , letting N → ∞ implies easily (4.22),
which was to be proved. �
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4.4.3. Lotka–Volterra Systems and Out-of-Equilibrium
Stationary States

Here we will make the link between the structure coefficients of the current
Eqs. (4.21) and the fluid limit description of stationary states. A solution is sought
of the form

f∞(φ) = exp

(∫ 1

0
dx

N∑

k=1

ρ∞
k (x)φk(x)

)

,

which, instantiated into (4.22), yields gives the following equations for the ρ∞
k ’s.

∂ρ∞
k

∂x
− ρ∞

k

∑

l �=k

αklρ∞
l = ck − vρ∞

k , k = 1, . . . , n.

The interpretation of this system is now quite obvious: it is exactly a particular
stationary solution of the system formed by the coupled Burger’s equations

∂ρk

∂t
= ∂2ρk

∂x2
− ∂

∂x

⎛

⎝ρk

∑

l �=k

αklρl

⎞

⎠ , k = 1, . . . , n,

where the functions ρk are sought in the class

ρk(x, t)
def= ρ∞

k (x − vt),

the variable (x − vt) being taken [modulo 1]. Hence, there is a frame rotating
at velocity v, in which ρ∞

k is periodic. Moreover, in this frame, the stationary
currents do not vanish and have constant values

Jk(x) = ∂ρ∞
k

∂x
+ ρ∞

k

⎛

⎝v −
∑

l �=k

αklρ∞
l

⎞

⎠ = ck .

Therefore, while the macroscopic constants {ck, k = 1, . . . , n} are in princi-
ple determined from the periodic boundary conditions constraints and from the
fixed average values of each particle species, they can also be directly derived
from the microscopic model.

5. TRANSIENT REGIME AND FLUCTUATIONS

The goal of this section is twofold: first, establish relationships between
currents and particle densities at the deterministic level by means of the law of
large numbers; secondly, compute the stochastic corrections to these relationships
for large but finite systems by using central limit theorems and large deviations.
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5.1. Time-Scale for Local Equilibrium

In keeping with our approach, we discuss the question of local equilibrium(30)

by means of the following functional

Y (N )
t

def= exp

⎡

⎣
1

N

n,N∑

k,l=1,i=1

φkl

(
i

N

)

Xk
i Xl

i+1

⎤

⎦ .

Without entering into cumbersome technical details, let us just notice that the
explicit computation of L (N )

t Y (N )
t shows that L (N )

t Y (N )
t scales like O(N ) instead of

O(1) as L (N )
t Y (N )

t . This fact can be interpreted as follows. The empirical measure

µ
(N )
t

def= 1

N

n,N∑

k,l=1,i=1

φkl

(
i

N

)

Xk
i Xl

i+1

is a convolution of the distribution of interfaces between particle domains with
a set of arbitrary functions. To any given particle density distribution, drawn
from the set of local hydrodynamic densities, there corresponds an arrangement
of these interfaces which somehow characterizes the local correlations between
particles. At steady-state, at least in the reversible case, it is easy to show that
these correlations vanish. Moreover this scaling tells us that correlations vanish
at a time-scale faster than the diffusion scale, by a factor of N . Therefore, even
in transient regime, we expect correlations to be negligible for the family of
diffusive processes under study. A more formal proof of this fact is postponed to
the completion of the functional approach initiated in Ref. 17.

5.2. Hydrodynamical Currents

In our preceding studies, we devised a scheme to obtain a fluid limit at
steady state, first for the reversible square-lattice model in Ref. 15, and also for
the non-reversible ABC model.(16) Here we generalize this procedure to transient
n-type particle systems, resting upon the hydrodynamic hypothesis, which will be
precisely stated. The principle of the method is to reverse the relationship between
particle and current variables in a suitable manner, in order to apply a law of large
numbers.

5.2.1. Diffusion Models

The system corresponds to rules (2.1). For any particle-type k, the rescaled
discrete current reads

J (N )
k

(
i

N

)
def= λ+

k (i + 1)Xk
i − λ−

k (i)Xk
i+1, i = 1, . . . , N , (5.1)
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with

⎧
⎪⎪⎨

⎪⎪⎩

λ+
k (i)

def= ∑

l �=k

λkl

N Xl
i + 	k Xk

i ,

λ−
k

def= ∑

l �=k

λlk

N Xl
i + 	k Xk

i ,

where arbitrary constants 	k have been introduced (they not modify the value of
Jk) to ensure that the λ±

k ’s never vanish. To be consistent with other scalings, 	k

is assumed to scale like N . Our hypothesis is that Jk has a limiting distribution.
Jk(x), such that, for any integrable complex-valued function α,

lim
N→∞

1

N

N∑

i=1

α

(
i

N

)

J (N )
k

(
i

N

)

=
∫ 1

0
α(x)Jk(x) dx . (5.2)

In addition, the system will be said equidiffusive, if there exists a single
diffusion constant D, such that, for all pair of species (k, l),

lim
N→∞

λkl(N )

N 2
= D [equidiffusion].

To simplify the notation, consider equation for k = 1, writing Ja
def= J1 and replac-

ing X1
i by Ai . Then solving (5.1) as a linear system yields

Ai+1 = λ+
a (i + 1)Ai − J (N )

a
(

i
N

)

λ−
a (i)

.

This relationship between Ai and Ai+1 can be iterated, by means of a 2 × 2 matrix
products. Indeed, introducing the pair of numbers (ui , vi ) such that Ai = ui

vi
, the

recursion becomes

[
ui+1

vi+1

]

=

⎡

⎢
⎢
⎣

√
λ+

a (i+1)
λ−

a (i)
− J (N )

a ( i
N )√

λ+
a (i+1)λ−

a (i)

0
√

λ−
a (i)

λ+
a (i+1)

⎤

⎥
⎥
⎦

[
ui

vi

]
def= Mi

[
ui

vi

]

,
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where for convenience we divided everything by the common factor√
λ−

a (i)λ+
a (i + 1). Let us define the matrices (p being a positive integer)

G0
(

i+p
N , i

N

)
def=

i+p∏

j=i

⎡

⎢
⎣

√
λ+

a ( j+1)
λ−

a ( j)
0

0
√

λ−
a ( j)

λ+
a ( j+1)

⎤

⎥
⎦ ,

G0
(

i+p
N , i

N

)
def=

i+p∏

j=i
M j ,

∑(
i
N

) def=

⎡

⎢
⎣

0 − J (N )
a ( i

N )√
λ+

a (i+1)λ−
a (i)

0 0

⎤

⎥
⎦ ,

(explicit references to the species (a) and the size N is omitted here, to lighten the
notations). Because of the upper triangular structure of �, we may simply express
G as

G

(
i + p

N
,

i

N

)

= G0

(
i + p

N
,

i

N

)

+
p∑

j=0

G0

(
i + p

N
,

i + j + 1

N

)

×
∑(

i + j

N

)

G0

(
i + j − 1

N
,

i

N

)

.

To handle this equation in the continuous limit, we need an additional trans-
formation. Define

Li =

⎡

⎢
⎣

√
	a

λ+
a (i)

0

0
√

λ+
a (i)
	a

⎤

⎥
⎦ , Ri =

⎡

⎢
⎢
⎣

√
λ−

a (i)
	a

0

0
√

λ−
a (i)
	a

⎤

⎥
⎥
⎦ ,

together with
⎧
⎨

⎩

G̃
(

i+p
N , i

N

)
= Li+p+1G

(
i+p

N , i
N

)
Ri

G̃0
(

i+p
N , i

N

)
= Li+p+1G0

(
i+p

N , i
N

)
Ri

. (5.3)

Then G̃, G̃0 and �̃ verify the same relation,

G̃

(
i + p

N
,

i

N

)

= G̃0

(
i + p

N
,

i

N

)

+
p∑

j=0

G̃0

(
i + p

N
,

i + j + 1

N

)

× �̃

(
i + j

N

)

G̃0

(
i + j

N
,

i + 1

N

)

, (5.4)
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but

�̃

(
i

N

)

=
⎡

⎣
0 − 	a J (N )

a ( i
N )

λ+
a (i+1)λ−

a (i)

0 0

⎤

⎦ .

Noting that Ai+p+1	a/λ
+
a (i + p + 1) = Ai+p+1 and Ai	a/λ

−
a (i) = Ai , the

iteration between i and i + p gives

Ai+p+1 =
G̃11

(
i+p

N , i
N

)
Ai + G̃12

(
i+p

N , i
N

)

G̃22

(
i+p

N , i
N

) . (5.5)

We can now take advantage of the law of large numbers in Eq. (5.4). First of all,

for N large, and fixing x = i/N and y = p/N , letting σ =
[1 0

0 −1

]
we have,

G̃0

(
i + p

N
,

i

N

)

= exp

⎛

⎝
σ

2

i+p+n∑

j=i+1,k=2

log
λak

λka
Xk

k

⎞

⎠

= exp

(
σ

2

∫ x+y

x
du

n∑

k=2

αakρk(u) + o(1)

)

,

from the hydrodynamic hypothesis. To proceed further, we have to distinguish
between two situations.

[The equidiffusion case] Recalling that 	a is a free parameter which scales like
N , it is convenient in the equidiffusion case to impose the limit

lim
N→∞

	a(N )

N
= D.

Then, expanding �̃(i/N ) with respect to 1/N yields

�̃

(
i

N

)

=

⎡

⎢
⎣

0 − J (N )
a ( i

N )
N D

0 0

⎤

⎥
⎦ + O(N−2),

and the limit

G(x + y, x)
def= lim

N→∞
G̃

(
i + p

N
,

i

N

)

.
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is provided by Eq. (5.4). Hence

G(x + y, x) = G0(x + y, x) +
∫ x+y

x
du G0(x + y, x + u)�(x + u)G0(x + u, x),

(5.6)
with

G0(y, x) = exp

(
σ

2

∫ y

x
du

n∑

k=2

αakρk(u)

)

, and �(x) =
[

0 − J (N )
a (x)

D
0 0

]

,

(5.7)

still by virtue of the hydrodynamic hypothesis (5.2). Now it is possible to close
the equations between densities and currents. Using again the hydrodynamic hy-
pothesis with the fact that G is a smooth deterministic operator, (5.5) leads to

ρa(x + y) = G11(x + y, x)ρa(x) + G12(x + y, x)

G22(x + y, x)
.

Differentiating this last relation w.r.t. y, then taking into account (5.6) and
(5.7), we obtain the final deterministic expression for the current

Ja(x) = D

(

−∂ρa

∂x
+

n∑

k=2

αakρkρa

)

, (5.8)

which, combined with the continuity equation

∂ρa

∂t
+ ∂ Ja

∂x
= 0,

leads again to a Burger’s hydrodynamic equation.

[The hetero-diffusion case] Here, the limit (5.4) is a bit more tricky. In fact,
the expansion of �̃ involves correlations between currents and densities which
already appear in the leading terms, and we expect an effective diffusion constant
of the form

Da(ρ) = D exp

(
n∑

k=2

βakρk

)

,

with
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
def= lim

N→∞
1

N 2
exp

(
1

n − 1

n∑

k=2

log λak(N )

)

,

βak def= lim
N→∞

log

(
λak

N 2 D

)

.
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We pursue no further the study of this case, which presumably could be
handled with block-estimates techniques (see Ref. 30).

5.2.2. Diffusion with Reaction

Here we treat the square-lattice model, a special case of (2.2), where reactions
take place, in addition to diffusion. The procedure follows the lines of the preceding
subsection. Using the mapping (2.5), the model is formulated in terms of two
coupled exclusion processes, and the current equations corresponding to both
species have the form

J (N )
a

(
i

N

)

= λ+
a (i)τ a

i τ̄ a
i+1 − λ−

a (i)τ̄ a
i τ a

i+1,

J (N )
b

(
i

N

)

= λ+
b (i)τ b

i τ̄ b
i+1 − λ−

b (i)τ̄ b
i τ b

i+1,

with the rates given by (2.6), and we restrict the present analysis to the symmetric
case (see relations (2.4)). Reversing for example the equation for Ja leads to the
homographic relationship

τ a
i+1 = λ+

a (i)τ a
i − J (N )

a
(

i
N

)

(λ+
a (i) − λ−

a (i))τ a
i + λ−

a (i)
,

which again can be iterated by means of a 2 × 2 matrix product, after defining ua
i

and va
i s.t. τ a

i = ua
i /v

a
i , ∀i ∈ {1, . . . , N }. Define

λ(N )
def= λ+(N ) + λ−(N )

2
, µ(N )

def= λ+(N ) − λ−(N )

2
,

and

γ (N )
def= γ +(N ) + γ −(N )

2
.

Then the proper scalings for large N are given by

lim
N→∞

λ(N )

N 2
= D, lim

N→∞
γ (N )

N 2
= 	, lim

N→∞
µ(N )

N
= η.

Letting now

�

(
i

N

)

=

⎡

⎢
⎢
⎣

0 − J (N )
a ( i

N )√
λ+

a (i)λ−
a (i)

√
λ+

a (i)
λ−

a (i)
−

√
λ−

a (i)
λi

a (i) 0

⎤

⎥
⎥
⎦ ,
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G cannot be given explicitly: it is instead solution of the following combinatorial
self-consistent equation

G

(
i + p

N
,

i

N

)

= G0

(
i + p

N
,

i

N

)

+
p∑

j=0

G0

(
i + p

N
,

i + j

N

)

×�

(
i + j

N

)

G

(
i + j

N
,

i + 1

N

)

. (5.9)

The iteration now reads,
[

ui+p+1

vi+p+1

]

= G

(
i + p

N
,

i

N

)[
ui

vi

]

.

For the same reason as before, the limit G of G when N → ∞ does satisfy

G(x + y, x) = G0(x + y, x) +
∫ x+y

x
du G0(x + y, x + u)�(x + u)G(x + u, x),

(5.10)

with

G0(y, x) = exp

(

ησ

∫ y

x
(2ρb(u) − 1) du

)

,

by just applying the law of large numbers in the formal expansion of G with respect
to �. We leave aside the question concerning existence and analytic properties of
a solution of (5.10). We must again discriminate between two situations.

[Case γ = λ]

�(x) =
[

η(2ρb − 1) − Ja (x)
D

2η(2ρb − 1) η(1 − 2ρb)

]

,

which leads to the following differential system

∂ua

∂x
= η(2ρb − 1)ua − 1

D
Ja(x)va,

∂va

∂x
= 2η(2ρa − 1)ua + η(1 − 2ρb)va,

after making use of the law of large numbers and the hydrodynamic hypothesis.
Combining these last two equations to express ρ ′

a = (u′
ava − v′

aua)/v2
a leads to

the relation

Ja(x) = −D

(
∂ρa

∂x
+ 2ηρa(1 − ρa)(1 − 2ρb)

)

.
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[Case γ �= λ] Like in the hetero-diffusion case of the last section, the effective
diffusion constant Da(ρ) involves correlations between τ b

i and τ b
i+1 and Ja(i/N )

in the leading order term, and we expect a behavior of the form(15)

Da(ρb) = D exp
[
2ρb(1 − ρb) log

γ

λ

]
,

as a result of a multiplicative process. This could be obtained through renormal-
ization techniques applied directly to equation (5.9).

To conclude this section, we see that, for γ = λ, the differential system
expressing, at steady state, the deterministic limit of the square lattice model with
periodic boundary conditions finally reads, setting νa,b = 2pa,b − 1,

⎧
⎪⎨

⎪⎩

∂νa

∂x
= η

(
1 − ν2

a

)
νb + vνa + ϕa,

∂νb

∂x
= −η

(
1 − ν2

b

)
νa + vνb + ϕb,

(5.11)

where v is a possibly finite drift velocity and ϕa = ϕ(ν̄a, ν̄b) and ϕb(ν̄a, ν̄b) are
two constant currents in the translating frame. These currents have to be deter-
mined in a self-consistent manner, after fixing the average densities ν̄a and ν̄b and
the periodic boundary conditions. For v = 0, the system (5.11) is Hamiltonian
with

H = η

2

[
ν2

aν2
b − ν2

a − ν2
b

] + ϕbνa − ϕaνb. (5.12)

Indeed, it is easy to observe that (5.11) can be rewritten as

∂νa

∂x
= −∂ H

∂νb
,

∂νb

∂x
= ∂ H

∂νa
.

The degenerate fixed point νa,b(x) = ν̄a,b is always a trivial solution and
corresponds to the relations

ϕa = η
(
ν̄2

a − 1
)
ν̄b, ϕb = η

(
1 − ν̄2

b

)
ν̄a .

5.3. Microscopic Currents

5.3.1. Particle Currents

An important feature of our particle systems is that the number of particles is
locally conserved. This property is reflected as N → ∞ by a continuity equation,
which relates local variations of particle density to inhomogeneous currents. In
a discretized framework, conservation of particles is expressed according to the
following
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Proposition 5.1. Let {J k
i (t, ε)}i = 1, . . . , N be stochastic variables correspond-

ing to the fluxes of particles of type k ∈ {1, . . . , n} between site i and i + 1, such
that

J k
i (t, ε)

def= 1

ε

∑

l �=k

(
Xk

i (t)Xl
i+1(t)Xl

i (t + ε)Xk
i+1(t + ε

)

−Xl
i (t)Xk

i+1(t)Xk
i (t + ε)Xl

i+1(t + ε))

with ε > 0. By definition J k
i (t, ε) are ternary variables in {− 1

ε
, 0,+ 1

ε
}. The fol-

lowing identify, equivalent to particle conservation,

lim
ε→0

Xk
i (t + ε) − Xk

i (t)

ε
+ J k

i+1(t, ε) − J k
i (t, ε) = 0 a.s., (5.13)

holds for all i ∈ {1, . . . , N }, ∀t ∈ R
+. In addition, letting η(N )(t) denote the

sequence {Xk
i (t)}, i = 1, . . . , N; k = 1, . . . , n} then the variables {J k

i (t, ε)},
i = 1, . . . , N; k = 1, . . . , n}, have a joint conditional Laplace transform given
by

h(N )
t,ε (φ)

def= Et

⎛

⎜
⎝exp

⎛

⎜
⎝

1

N

n,N∑

k<1
i=1

φk

(
i

N

)

ε J k
i (t, ε)

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

η(t)

⎞

⎟
⎠

= Et

⎡

⎢
⎣exp

⎛

⎜
⎝ε

n,N∑

k �=l
i=1

λkl Xk
i Xl

i+1

(
e

1
N ψkl ( i

N ) − 1
)

+ λlk Xl
i Xk

i+1

(
e− 1

N ψkl ( i
N ) − 1

)

⎞

⎟
⎠

⎤

⎥
⎦

+ o(ε), (5.14)

where φk , k = 1, . . . , n is a set of C∞ bounded functions, and ψkl = φk − φl .

Proof: The points are mere consequences of the Markovian feature of the process
and of its generator. In particular, (5.13) results from the fact that, almost surely, at
most one jump takes place in the timeinterval ε, when ε → 0, since all events are
due to independent Poisson processes. In addition, on the time interval [t, t + ε],
the occurrence of a particle exchange between sites i and i + 1, corresponding to
ε J k

i (t, ε) = 1 is only conditioned by the presence of a pair (k, l) at (i, i + 1), with
a transition rate given by λkl Xk

i Xl
i+1. Therefore

h(N )
t,ε (φ) = Et

⎛

⎝
n,N∏

k �=l
i=1

[
1 + ελkl Xk

i Xl
i+1

(
e

1
N ψkl (

i
N ) − 1

)]
⎞

⎠ ,

which, after a first order expansion with respect to ε, leads to (5.14). �
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5.3.2. An Iterative Numerical Scheme

Given a sample path η(N )(t) at time t, we may generate a current sequence
{J k

i (t, ε)} according to the local product form encountered earlier. In turn, once
the set {J k

i (t, ε)} is known, the sequence η(t + ε) is almost surely determined,
as ε → 0, by the identity (5.13), expressing conservation law of particles. We
therefore have at hand an explicit stochastic numerical scheme to generate the
sequence η(t) step by step.

Proposition 5.2. For any ε > 0, N ∈ N, the iterative scheme given by

Qn+1(η) =
∑

η′
Pε(η|η′)Qn(η),

where Pε(η|η′) is defined according to (5.13) and (5.14), converges when ε → 0
to the original probability measure Pt=nε(η) corresponds to the original process.

Proof: There is only one thing to show: ∀T > 0, the probability pε that ∃t ∈
[0, T ], such that two adjacent transitions occur within the same time-interval
[t, t + ε], tends to 0 when ε → 0. This is warranted by the fact that the total
number of transitions for t < T is almost certainly finite. Indeed, we have

pε ≤ 1 − (
1 − (

max
kl

λkl

)2
ε2

) N T
ε →

ε→0
0.

For the hydrodynamic limit the rates λkl scale like N 2 for large N . Thus, it will be

convenient to take a single limit ε
def= ε(N ) → 0 as N → ∞, since the condition

for the scheme to be meaningful writes

Nε(N )(max
kl

λkl)
2 = o(1),

so that we get a scaling of ε(N ) = o(N−5) to meet our needs. This will allow us,
in the sequel, to make use of the approximation

N∑

i=1

αk
i

(

Xk
i (t + ε) − Xk

i (t) −
∑

l

(
J k

i−1 − J k
i

)
ε

)

= o(ε),

for any set of bounded complex numbers {αk
i }. �

5.3.3. Central Limit Theorem for Currents

We are in position to exploit the conditional product form (5.14) to perform
a mapping, in the spirit of Lemma 4.1 of Ref. 15, allowing to obtain a dynamical
description of the system, in terms of some external free random process. To this
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end we assume, as a basic point, the hydrodynamic limit holds and we rest on the
following lemma.

Lemma 5.1. Suppose the existence of a set of density functions ρk , such that

E

⎡

⎢
⎣exp

⎛

⎜
⎝

1

N

n,N∑

k=1
i=1

Xk
i φk

(
i

N

)
⎞

⎟
⎠

⎤

⎥
⎦

= exp

⎛

⎜
⎝

n,N∑

k=1
i=1

log

[

1 + ρk

(
i

N

)
(
eφk( i

N ) − 1
)
]

+ o(N−2)

⎞

⎟
⎠ ,

for any given bounded complex function φk , and let φ = sup
k∈{1,...,n}

x∈[0,1]

(φk(x)). Then

E

⎡

⎢
⎣exp

⎛

⎜
⎝

1

N

N∑

k<1
i=1

φk

(
i

N

)

φl

(
i

N

)

Xk
i Xl

i

⎞

⎟
⎠

⎤

⎥
⎦

= exp

⎛

⎜
⎝

1

N

N∑

k<1
i=1

φk

(
i

N

)

φl

(
i

N

)

ρk

(
i

N

)

ρl

(
i

N

)

+ o

(
φ

N

)
⎞

⎟
⎠ .

From this we deduce the following identity

h(N )
t,ε (φ) = exp

⎡

⎢
⎣ε

n,N∑

k<1
i=1

λklρ
k

(
i

N

)

ρl

(
i + 1

N

)
(
e

1
N ψkl (

i
N ) − 1

)

+ λlkρ
l

(
i

N

)

ρk

(
i + 1

N

)
(
e− 1

N ψkl (
i
N ) − 1

) + o(ε)

⎤

⎥
⎦ , (5.15)

which leads to recover (in our specific context) a formulation of the general result
of Ref. 4 concerning fluctuation laws of currents for diffusive systems.

Keeping up to quadratic terms w.r.t. to functions φ’s its argument, h(N )
t,ε (φ)

reads,

h(N )
t,ε (φ) = exp

⎛

⎜
⎝ε

n,N∑

k=1
i=1

φk

(
i

N

)

J k

(

ρ

(
i

N

))

+ Dε

N 2

n∑

k,l=1

φk

(
i

N

)

Qkl

(
i

N

)

φl

(
i

N

)

+ o

(
φ2

N 2

)
⎞

⎠ , (5.16)
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where J k are deterministic currents expressed, in terms of densities, by

J k({ρl, l = 1, . . . , n}) def= −D

⎛

⎝
∂ρk

∂x
+

∑

l �=k

αklρkρl

⎞

⎠ ,

and Q is a n × n symmetric matrix
{

Qi j = −ρiρ j , i �= j,

Qii = ρi (1 − ρi ).

Q is of rank n − 1, because due to the exclusion constraint, currents are not
independants,

n∑

k=1

J k
i (t, ε) = 0, ∀i ∈ {1, . . . , N }.

Let M the reduced matrix obtained from Q by deleting last row and last
column. Its determinant is

∏n
k=1 ρk , so that it M invertible if none of the ρk

vanishes, with
{

M−1
i j = 1

ρi
+ 1

ρn
, i �= j,

M−1
i i = 1

ρn
,

(5.17)

after having taken into account the exclusion condition
∑n

n=1 ρk = 1. Since every
line k or column k sums to ρkρn > 0, all the eigenvalues are strictly positive, and
hence M(ρ) ows a real square-root matrix M1/2(ρ).

Proposition 5.4. Let φk , k = 1, . . . , n − 1 denote a set of C∞ bounded func-
tions of the real variable x ∈ [0, 1], {wk

i , k = 1, . . . , n − 1} a set of independent
identically distributed Bernoulli random variables with parameters 1/2, taking at
time t values in {−1/2, 1/2}. Then there exists a probability space, such that

1

N

n,N∑

k=1
i=1

φk

(
i

N

)

J k
i ε = 1

N

n−1,N∑

k=1
i=1

ψkn

(
i

N

)[

J k

(

ρ

(
i

N

))

ε

+
√

2Dε

n−1∑

l=1

M
1
2

kl

(

ρ

(
i

N

))

ωl
i

]

+ O(N−2), a.s.

(5.18)

The lines of arguments bare some features in common with the ones proposed
in Ref. 15 (to study fluctuations at steady state). Recall, by law of large numbers,
that correlations are negligible and do not affect the expression of the deterministic
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currents (5.8). This justifies the mapping (5.18). On the other hand, the calculation

of coefficents M
1
2

i j is done by comparing h(N )
t,ε in (5.16) with

E

⎡

⎢
⎣exp

⎛

⎜
⎝

1

N

n−1,N∑

k=1
i=1

ψkn

(
i

N

)√
2DεM

1
2

kl

(
i

N

)

ωl
i

⎞

⎟
⎠

⎤

⎥
⎦

= exp

(
Dε

N 2

n∑

kl

φk

(
i

N

)

Qkl

(
i

N

)

φl

(
i

N

)

+ o(ε)

)

,

because M
1
2 is symmetric and

n−1∑

kl

ψkn

(
i

N

)

Mklψln

(
i

N

)

=
n∑

kl

φk

(
i

N

)

Qkl

(
i

N

)

φl .

Setting, for k = 1, . . . , n − 1,

Y (N )
k (x, t)

def= 1√
N

[x N ]∑

i=1

wk
i ,

one sees that the space-time white noise processes

W k(x, t) = lim
N→∞

dY (N )
k

dx
(x, t)

describes all current fluctuations in the continuous limit.

5.4. Macroscopic Fluctuations

Two main quantities with be explored in this section: the Lagrangian and the
large deviation functional.

5.4.1. The Lagrangian

The preceding section provides us with all coefficients required to achieve an
informal derivation of the Lagrangian(4) describing the current fluctuations. Given
the empirical measure

ρ
(N )
k (x, t)

def= 1

N

n∑

i=1

Xk
i (t)δ

(

x − i

N

)

,

and assuming the system admits a hydrodynamical description in terms of a density
field ρk(x, t), the statement in Ref. 4 says that there is a large deviation principle
for the stationary measure. In other words, the probability that the measure ρ

(N )
k
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deviates from the hydrodynamic density profile ρk is exponentially small and given
by

P
{
ρ(N )(t) � ρ̂(t), t ∈ [t1, t2]

} � e−N I[t1 ,t2](ρ̂),

where

I[t1,t2](ρ̂) =
∫ t2

t1

L(ρ̂(t), ∂t ρ̂(t)) dt.

Here the deviation from hydrodynamic solutions is due to current fluctuations.

Writing ∇−1 def= ∫ x
0 the quantity ∇−1 ∂ρ̂

(N )
k

∂t + J k(ρ̂), represents the fluctuations
of the current J k . Reversing the relationship between current fluctuations and white
noise process leads formally to

W l (x, t) �
√

ε

2DN

n−1∑

k=1

M
− 1

2
lk

(

∇−1 ∂ρ̂k

∂t
+ Jk(ρ̂)

)

, l = 1, . . . , n − 1.

(5.19)
Then, replacing (5.19) in the joint distribution of {W k(x, t); x ∈ [0, 1], k =

1, . . . , n − 1} we obtain

L(ρ̂(t), ∂t ρ̂(t)) dt = 1

2

∫ 1

0
dx dt

n−1∑

k=1

(W k(x, t))2

= 1

4D

∫ 1

0
dx dt

n−1∑

k=1

(
n−1∑

l=1

M
− 1

2
lk ∇−1 ∂ρ̂k

∂t
+ Jk(ρ̂)

)2

, (5.20)

where ε has been identified with dt and dx with 1/N . Then, the symmetry of
M−1/2, the form (5.17) of M−1 and the exclusion constraint

n∑

k=0

∇−1 ∂ρ̂k

∂t
+ J k(ρ̂) = 0,

lead to the final compact form

L(ρ̂, ∂t ρ̂) = 1

4D

∫ 1

0
dx

n∑

k=1

(
∇−1 ∂ρ̂k

∂t + J k(ρ̂)
)2

ρ̂k
.

5.4.2. Hamilton–Jacobi Equation and Large Deviation Functional

Here we proceed as in Ref. 4. Let πk , the conjugate variable of ρk ,

πk(x, t)
def= ∂L(ρ, ∂tρ)

∂∂tρk(x, t)
.
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The Hamiltonian is then given by

H({ρk, πk}) def=
∫ 1

0
dx

n∑

k=1

πk(x, t)∂tρk(x, t) − L.

Algebraic manipulations lead to the expression

H({ρk, πk}) def=
∫ 1

0
dx[∂xπkJk(ρ) + Dρk(∂xπk)2].

Then the large deviation functional F , satisfying

P
(
ρ(N ) � ρ

) � e−NF (ρ),

might be derived as in Ref. 4, from the following regular variational principle

F(ρ) = inf
ρ̂

I[−∞,0](ρ̂),

where the minimum is taken over all trajectories ρ̂ connecting the stationary
deterministic equilibrium profiles ρ̄k to ρ. This means that F and the action
functional I must satisfy the related Hamilton–Jacobi equation

H
({

ρk,
∂F
∂ρk

})

= 0.

In addition, one can check the relation

F = U − S,

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U =
∫ 1

0
ds

∫ x

0

∑

k �=1
αklρk(x)ρl(y)dy,

S = −
∫ 1

0
dx

n∑

k=1

ρk log ρk,

a form already encountered in the reversible case, see Eq. (3.10). Indeed, when
the process is reversible, U is translation invariant (i.e. independent of the initial
integration point, here set to zero), and so

∂x
∂F

∂ρk(x)
= − Jk

Dρk
.

This approach could be used to analyze the non-reversible case.

6. CONCLUDING REMARKS

In this report, we strove to put forward some techniques and methods allowing
to tackle the problem of mapping discrete models to continuous equations. Even in
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the context of a very specific case, that is stochastic distortions of discrete curves,
some intricate questions (hereafter quoted) remain still unanswered.

• The determination of the invariant measure in the general case, at the
discrete level: this would generalize the totally asymmetric case.(18,27)

• The analysis of Hamilton–Jacobi equations to obtain a kind of continuous
counterpart of the invariant measures, namely large deviation functionals.

With regard to hydrodynamic limits, a puzzling issue arises when particle-species
diffuse at various speeds, in what we called the heterodiffusive case. For many
one-dimensional models, it is well known that a single slow particle may consid-
erably modify the macroscopic behavior of the system (see e.g. Ref. 26). For the
time being, our approach is restricted to diffusive one-dimensional systems. Yet,
other scalings (like Euler), as well as processes in higher dimension, are definitely
worth being studied. In particular, it might be tempting to deal with more realistic
exclusion processes, like those encountered in the field of traffic modelling. Be-
sides, the analysis of irreversible invariant states in terms of cycles in a state-graph
might well be extended to study ASEP on closed networks.
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19. C. Godrèche and J. Luck, Nonequilibrium dynamics of urns models. J. Phys. Cond. Matter 14:1601
(2002).

20. O. Kallenberg, Foundations of Modern Probability (Springer, second edition ed., 2001).
21. M. Kardar, G. Parisi and Y. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett.

56:889–892 (1986).
22. F. P. Kelly, Reversibility and Stochastic Networks (John Wiley & Sons Ltd., 1979. Wiley Series in

Probability and Mathematical Statistics).
23. C. Kipnis and C. Landim, Scaling Limits of Interacting Particles Systems (Springer-Verlag, 1999).
24. R. Lahiri, M. Barma and S. Ramaswamy, Strong phase separation in a model of sedimenting

lattices. Phys. Rev. E 61: 1648–1658 (2000).
25. T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (vol. 324

of Grundlehren der mathematischen Wissenschaften Springer, 1999).
26. K. Mallick, Shocks in the asymmetry exclusion model with an impurity. J. Phys. A: Math. Gen.

29:5375–5386 (1996).
27. K. Mallick, S. Mallick and N. Rajewsky, Exact solution of an exclusion process with three classes

of particles and vacancies. J. Phys. A: Math. Gen. 32:8399–8410 (1999).
28. J. Murray, Mathematical Biology, vol. 19 of Biomathematics (Springer-Verlag, second ed., 1993).
29. W. Rudin, Functional Analysis, International Series in Pure and Applied Mathematics (Mc-

GrawHill, second ed., 1991).
30. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, 1991).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


